FI222 Mathematical Physics I

	$\begin{aligned} & \text { CLO } \\ & \text { CLO } \end{aligned}$		Explain about partial a and notations), the differ calculations, the chain and more extended chain Apply the concept of ordinary maximum and the maximum, minimum Lagrange multipliers Explain about finding th using Leibniz's rule, the Apply the concept of d solving relevant math and Explain about variable the Jacobian concept, th Explain of ordinary diffe terminology, the formu phenomenon, to finding using various methods exact. Bernoulli, second-order GDP solu homogeneous coefficie non-homogeneous GDP methods: order reductio parameter variations, Apply the concept of G problems. Explain the calculus of problems (notation and principles in optical pro various types of variab and Hamiltonian principl Apply the Hamiltonia problems, Explain the Van Baak va Ability to apply the princ in solving direct current Explain the power serie the power series con testing techniques, the and McLaurin series) Apply the concept of po math and physics proble Explain the Fourier serie notation and terminology odd, even, and not odd p Expalin about expressing sine series, Fourier Sine-Cosine series Explain Parseval's theor Apply the concept of Physics problems.	total differentia tial concepts in ules, implicit d ules. partial differentia minimum value roblem is cons differentiation of uble and triple in ble and triple physics problem anges in fold in surface integral tial equations, ing GDP from a first order P variable separa ar, Homogen n that has a to finding a solution using indeterminate in solving rele riations for Sta terminology), ms, the Euler , the Lagrang principle in ation principle e of the Van B ctric circuit prob (notation and rgence test us ction in power er series in solv . or periodic func he Dirichlet's co iodic functions. a periodic functi sine series, and Fourier's Fourier serie	(definitions approximate ferentiation, tion in the oblem, and ained using an integral tegrals. tegration in grals using otation, and a physical DB solution on method; eous, the nstant and econd-order following coefficients, ant Physics onary value e Fermat's equations in equations, Mechanics ak variation ems. rminology), ing various eries (Taylor ing relevant ons, dition, the n in Fourier and Fourier pectrum, in relevant
Content:	Matrix, The partial and total differential, The Integral, the ordinary				
Study/exam achievements:	No	CLO	Assessment Object	Assessment Techniques	Weight
	1		Subject specific competences:		

PLO and CLO mapping

	PLO1	$\begin{array}{r} \text { PLO } \\ \hline \end{array}$	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11	PLO12
CLO1	\checkmark											
CLO2	$\sqrt{ }$											
CLO3	\checkmark											
CLO4	\checkmark											
CLO5	$\sqrt{ }$											
CLO6	$\sqrt{ }$											
CLO7	$\sqrt{ }$											
CLO8	\checkmark											
CLO9	\checkmark											
CLO10	$\sqrt{ }$											
CL011	\checkmark											
CLO12	\checkmark											
CLO13	$\sqrt{ }$											
CLO14	$\sqrt{ }$											
CL015	\checkmark											
CLO16	$\sqrt{ }$											
CLO17	$\sqrt{ }$											
CLO18	\checkmark											
CLO19	\checkmark											
CLO20	\checkmark											

