FI240 Mathematical Physics II

Module name:	Mathematical Physics II
Module level, if applicable:	Undergraduate
Code:	FI240
Sub-heading, if applicable:	-
Classes, if applicable:	-
Semester:	$3{ }^{\text {rd }}$
Module coordinator:	Andi Suhandi
Lecturer(s):	Andi Suhandi
Language:	Bahasa Indonesia
Classification within the curriculum:	Compulsory Course
Type of Teaching	Contact hours per week during the semester Class Size
1. Lecture (conceptual, contextual, and problem-solving approaches through expository, discussions and exercises). 2. Structured activities (assignments based on conceptual, contextual, and problem-solving approaches) 3. Self-study (reading literature)	3 hours 20 minutes 35
Workload:	The total workload is 181 hours 20 minutes (6.4 ECTS) per semester, consisting of 40 hours/2400 minutes lectures (1.41 ECTS), 56 hours $/ 3360$ minutes structured activities (1.98 ECTS) and 56 hours/3360 minutes self-study (1.98 ECTS) per week for 12 weeks, 29 hour 11 minutes for four exams (1.03 ECTS)
Credit points:	6.4 ECTS
Pre-requisites course(s):	Fl120 Basic Mathematics, Fl222 Mathematical Physics I
Course Learning Outcomes (CLO):	After taking this course the students have ability to: CLO1: Explain vector quantities, notations, and terminology, as well as examples in physics. CLO2: Apply vector addition, multiplication of vector quantities, differentiation of vector quantities, and integration of vector quantities. CLO3: Apply conceptual and procedural knowledge about solving a problem of integration of a function by using various special functions in the integral form. CLO4: Apply conceptual and procedural knowledge about solving a problem using Legendre polynomials, Legendre series, various forms and types of Bessel functions, Hankel functions, Laguerre polynomials and Hermite polynomials.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \multicolumn{5}{|l|}{\begin{tabular}{l}
CLO5: Apply conceptual and procedural knowledge about the use o various partial differential equations, Laplace equation diffusion equation, and wave equation in the study an analysis of a relevant physical phenomenon. \\
CLO6: Apply conceptual and procedural knowledge about the use o various mathematical operations of complex numbers. \\
CLO7: Apply conceptual and procedural knowledge about the use of complex variable functions in solving the relevant problem. \\
CLO8: Apply conceptual and procedural knowledge of integral transforms, Laplace transforms, Fourier transforms, convolutions, Parseval theorem, inverse Laplace transforms (Bromwich Integral), delta Dirac functions, and Green-functions.
\end{tabular}} \\
\hline Content: \& \multicolumn{5}{|l|}{Vector Analysis, Special Functions-1 (Gamma, Beta, Error, Zeta-Riemann Function, Stirling's Formula, and Elliptic Integral), Special Function-2 (Legendre Polynomials, Bessel Function, Lagguere Polynomial, Hermite Polynomial), Partial Differential Equations, Complex number, Function of a Complex Variable, and Integral Transforms.} \\
\hline \& \multicolumn{5}{|l|}{The final mark will be weight as follow:} \\
\hline \& No \& CLO \& Assessment Object \& Assessment Techniques \& Weight \\
\hline Study/exam achievements: \& 1 \& \(1-8\)

$1-2$
$3-4$
$5-6$

$7-8$ \& | Subject specific competences: |
| :--- |
| a. Individual assignments |
| b. Exam: |
| - Exam 1 |
| - Exam 2 |
| - Exam 3 |
| - Exam 4 | \& | Written |
| :--- |
| Written test Written test Written test Written test | \& 20%

20%
20%
20%
20% \\
\hline \& Total \& \& \& \& 100\% \\
\hline Forms of media: \& \multicolumn{5}{|l|}{Board, LCD Projector, Laptop/Computer, LMS} \\

\hline Literature: \& \multicolumn{5}{|l|}{| 1. Boas, M. L. (2015). Mathematical methods in the physical sciences. Wiley. |
| :--- |
| 2. Farlow, S. J., (2006), An Introduction to Differential Equations and Their Applications, Dover Publications. |
| 3. Jain, M. C. (2018). Vector spaces, matrices and tensors in physics. Alpha Science International, Limited. |
| 4. Blanchard, P., \& Bruening, E. (2012). Mathematical Methods in Physics. Springer Science \& Business Media. |
| 5. Forinash, K. (2009). Mathematical methods in physics - partial differential equations, fouriers. A K Peters. |
| 6. Neuenschwander, D. E. (2015). Tensor calculus for physics: a concise guide. Johns Hopkins University PressFarlow, S. J., (2006), An Introduction to Differential Equations and Their Applications, Dover Publications. |} \\

\hline
\end{tabular}

PLO and CLO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11	PLO12
CLO1	$\sqrt{ }$											
CLO2	$\sqrt{ }$											
CLO3	$\sqrt{ }$											
CLO4	$\sqrt{ }$											
CLO5	$\sqrt{ }$											
CLO6	$\sqrt{ }$											
CLO7	$\sqrt{ }$											
CLO8	$\sqrt{ }$											

